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Abstract
Polymer-based additive manufacturing processes have been increasingly adopted across numerous industries due
to their flexibility and cost-effectiveness, yet they remain susceptible to process anomalies that can significantly
impact part quality and system reliability. This paper presents a novel framework for real-time process monitoring
and anomaly detection in polymer-based additive manufacturing systems through the development of explainable
machine learning algorithms. We propose a multi-modal sensing approach coupled with a hierarchical feature
extraction methodology that leverages both statistical and deep learning techniques to identify process deviations
across thermal, mechanical, and rheological domains. Our approach demonstrates a 97.8% accuracy in anomaly
detection while maintaining interpretability through integrated gradient-based attribution methods and concept
activation vectors. Experimental validation conducted across five different polymer materials shows that our
framework reduces false positive rates by 43.2% compared to traditional methods while enabling root cause analysis
within 2.4 seconds of anomaly occurrence. This work bridges the gap between high-performance machine learning
models and the interpretability requirements necessary for manufacturing process control, thereby enhancing both
production reliability and operator trust in automated monitoring systems.

1. Introduction

Additive manufacturing (AM) has revolutionized manufacturing paradigms by enabling the production
of complex geometries with reduced material waste and enhanced design freedom [1]. Polymer-
based AM processes, including fused deposition modeling (FDM), selective laser sintering (SLS), and
stereolithography (SLA), have gained significant traction across aerospace, automotive, medical, and
consumer product sectors. Despite these advantages, polymer AM processes suffer from inconsistent
part quality, process variability, and limited process understanding that hinder wider industrial adoption.

Process monitoring and control represent critical challenges in polymer AM, particularly due to
the complex physicochemical transformations that occur during material deposition, fusion, or curing
processes [2]. Traditional monitoring approaches rely primarily on predetermined threshold values of
individual process parameters, which fail to capture the intricate interactions between process variables
and their collective impact on part quality. Recent advancements in sensor technology, computa-
tional capabilities, and machine learning algorithms have created opportunities for more sophisticated
monitoring approaches.

The implementation of machine learning (ML) algorithms for process monitoring in AM has demon-
strated promising results in recent years. However, most existing approaches utilize "black-box" models
that provide minimal insight into the rationale behind their predictions [3]. This opacity presents sig-
nificant challenges in manufacturing environments where process engineers require not only accurate
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anomaly detection but also comprehensive understanding of process dynamics to implement appropriate
corrective actions.

This research addresses these limitations by developing a novel framework for explainable machine
learning-based process monitoring and anomaly detection specifically tailored for polymer AM
processes. The framework integrates multi-modal sensing data, hierarchical feature extraction method-
ologies, and explainability techniques to create a monitoring system that delivers both high accuracy and
interpretable results [4]. Our approach enables not only the detection of process anomalies in real-time
but also provides contextual information regarding the root causes of deviations, thereby facilitating
faster and more informed decision-making during manufacturing operations.

We demonstrate the efficacy of our approach through extensive experimental validation across
multiple polymer materials and process conditions, establishing a foundation for more robust and reliable
polymer AM processes. The framework’s ability to provide explanations for its predictions represents
a significant advancement toward bridging the gap between sophisticated machine learning techniques
and practical implementation in production environments where transparency is essential.

The remainder of this paper is organized as follows [5]. Section 2 discusses relevant background on
polymer AM processes and existing monitoring approaches. Section 3 details the proposed explainable
machine learning framework. Section 4 describes the experimental setup and validation methodology
[6]. Section 5 presents the results of anomaly detection performance and explainability evaluation.
Section 6 provides a comprehensive discussion of findings, and Section 7 concludes with implications
and future research directions.

2. Polymer Additive Manufacturing Processes and Monitoring Approaches

Polymer-based additive manufacturing encompasses a diverse range of processes that transform poly-
meric materials into three-dimensional structures through layer-by-layer fabrication. Each process
presents unique challenges related to material behavior, thermal management, and process stability
that necessitate specialized monitoring approaches. [7]

Fused deposition modeling, the most widely adopted polymer AM technology, involves the extrusion
of thermoplastic filaments through a heated nozzle to create successive layers. The process quality
depends critically on material flow consistency, thermal stability, and layer adhesion dynamics. Selective
laser sintering utilizes a laser to selectively fuse polymer powder particles, with process outcomes heavily
influenced by powder bed thermal homogeneity, laser energy distribution, and sintering kinetics [8].
Stereolithography and digital light processing technologies employ photopolymerization mechanisms,
where process reliability hinges on resin rheological properties, light intensity distribution, and curing
reaction kinetics.

Existing monitoring approaches for polymer AM processes can be categorized into three primary
methodologies: in-situ sensing, post-process inspection, and model-based approaches. In-situ sensing
strategies deploy various sensor modalities including infrared thermography, acoustic emission sensors,
optical imaging systems, and force/torque sensors to capture real-time process data. These approaches
provide valuable temporal information but often suffer from sensor placement limitations, environmental
noise interference, and challenges in data integration. [9]

Post-process inspection techniques, including computed tomography, ultrasonic testing, and dimen-
sional metrology, enable comprehensive quality assessment but fail to provide real-time feedback
necessary for process intervention. Model-based approaches utilize physics-based simulations to pre-
dict process behavior and identify potential anomalies based on discrepancies between simulated and
measured process parameters. However, these models often incorporate simplifying assumptions that
limit their accuracy for complex material behaviors and process interactions. [10]

Recent monitoring systems have increasingly incorporated machine learning techniques to overcome
these limitations. Supervised learning approaches have demonstrated success in classifying process
states and detecting anomalies based on labeled training data. Unsupervised techniques have proven
valuable for identifying previously unobserved process deviations without requiring extensive labeled
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datasets. Reinforcement learning methodologies have shown promise for adaptive process control
strategies that can respond to changing process conditions. [11]

Despite these advancements, existing machine learning approaches for polymer AM monitoring
suffer from several critical limitations. Most implementations utilize complex model architectures that
function as "black boxes," providing minimal insight into their decision-making processes. This opacity
significantly hinders the practical implementation of these systems in production environments where
process engineers require not only anomaly detection but also contextual understanding to implement
appropriate corrections. [12]

Additionally, current approaches typically focus on specific process parameters or material types, lim-
iting their generalizability across diverse manufacturing scenarios. Many systems also fail to adequately
address the temporal dynamics of polymer AM processes, where anomalies may develop gradually over
extended periods before manifesting as detectable quality issues.

Our research addresses these limitations through the development of an explainable machine learn-
ing framework specifically designed for polymer AM processes. The framework integrates multi-modal
sensing data with hierarchical feature extraction methodologies and incorporates explainability tech-
niques to deliver monitoring capabilities that provide both accurate anomaly detection and interpretable
results accessible to manufacturing personnel. [13]

3. Explainable Machine Learning Framework for Process Monitoring

The proposed framework for explainable machine learning-based process monitoring in polymer AM
consists of four interconnected modules: multi-modal data acquisition, hierarchical feature extraction,
anomaly detection, and explanation generation. This section details the theoretical foundations and
implementation strategies for each module.

3.1. Multi-Modal Data Acquisition

Our framework employs a comprehensive sensing approach that captures process dynamics across
thermal, mechanical, and rheological domains [14]. The sensing architecture incorporates infrared
thermal imaging (spatial resolution of 640×480 pixels with a thermal sensitivity of 0.05°C), multi-
channel acoustic emission monitoring (sampling rate of 2 MHz with 16-bit resolution), high-speed
optical imaging (1000 frames per second with 4-megapixel resolution), and force/torque measurements
(sampling rate of 1 kHz with 0.01 N resolution).

Sensor synchronization is achieved through a master clock signal that provides timestamp coordina-
tion with microsecond precision. This temporal alignment enables the correlation of phenomena across
different sensing modalities and facilitates the detection of complex process interactions that manifest
across multiple physical domains.

Data preprocessing includes statistical outlier removal, signal filtering using adaptive Savitzky-
Golay filters, and spatial registration for imaging data [15]. Dimensional reduction techniques, including
principal component analysis for high-dimensional thermal data and wavelet decomposition for acoustic
signals, are applied to manage computational requirements while preserving essential information
content.

3.2. Hierarchical Feature Extraction

Feature extraction follows a hierarchical approach that progresses from low-level signal characteristics to
high-level process indicators. At the lowest level, statistical features including mean, standard deviation,
skewness, kurtosis, and frequency-domain characteristics are extracted from each sensing modality [16].
These features capture fundamental signal properties and provide a baseline for anomaly detection.

Mid-level feature extraction employs domain-specific algorithms to identify process-relevant char-
acteristics. For thermal data, we implement a region-growing algorithm to identify thermal gradients
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and isothermal boundaries. Acoustic emission signals are analyzed using a custom-developed transient
detection algorithm that identifies characteristic waveform patterns associated with material fusion
events and potential defect formation [17]. Optical data undergoes image segmentation and morpholog-
ical analysis to extract geometrical features related to material deposition patterns and layer consistency
[18].

High-level feature extraction integrates information across sensing modalities to derive process
indicators that correlate with part quality and process stability. This integration is achieved through
a tensor fusion network architecture that preserves the unique characteristics of each modality while
enabling the identification of cross-modal interactions [19]. The resulting feature space provides a
comprehensive representation of process state that serves as input for the anomaly detection module.

3.3. Mathematical Modeling of Temporal-Spatial Process Dynamics

The accurate modeling of polymer additive manufacturing processes requires sophisticated mathematical
frameworks that can capture both the temporal evolution of process parameters and their spatial distribu-
tion across the fabrication volume. We have developed a novel spatio-temporal modeling approach that
combines differential geometry, stochastic processes, and variational methods to represent the complex
dynamics inherent in polymer AM systems.

Let Ω ⊂ R3 denote the spatial domain of the manufacturing process, with a time domain T = [0, 𝑇].
We define a process state function 𝑢 : Ω × T → R𝑚 that encapsulates 𝑚 process parameters at each
spatial location and time point. The evolution of this state function is governed by a partial differential
equation system: [20]

𝜕𝑢

𝜕𝑡
= F (𝑢,∇𝑢,∇2𝑢, 𝑥, 𝑡) + 𝜂(𝑥, 𝑡)

where F : R𝑚×R𝑚×3×R𝑚×3×3×Ω×T → R𝑚 represents the deterministic dynamics of the system,
and 𝜂 : Ω × T → R𝑚 characterizes the stochastic perturbations inherent in the manufacturing process.

For polymer extrusion processes specifically, we decompose the state function 𝑢 = (𝑇, 𝑣, 𝜎, 𝜙)𝑇 into
temperature field 𝑇 , velocity field 𝑣, stress tensor 𝜎, and material phase indicator 𝜙. The dynamics
operator F integrates multiple physical phenomena:

F =

©«
∇ · (𝑘 (𝑇, 𝜙)∇𝑇) + 𝛼(𝑇, 𝜙)𝜎 : ¤𝜖 − 𝜌(𝑇, 𝜙)𝑐𝑝 (𝑇, 𝜙)𝑣 · ∇𝑇

1
𝜌(𝑇,𝜙)∇ · 𝜎 + 𝑔 − (𝑣 · ∇)𝑣
G(𝑇,∇𝑣, 𝜙) − 𝛽(𝑇, 𝜙)𝜎
𝛾(𝑇, 𝜎) |∇𝜙| + 𝛿(𝑇)H (𝜙)

ª®®®¬
where 𝑘 (𝑇, 𝜙) represents the thermal conductivity tensor, 𝛼(𝑇, 𝜙) is the thermal conversion efficiency

of mechanical work, 𝜌(𝑇, 𝜙) denotes the material density, 𝑐𝑝 (𝑇, 𝜙) is the specific heat capacity, ¤𝜖 is
the strain rate tensor, 𝑔 is the gravitational acceleration, G is a tensor-valued constitutive relation that
models the viscoelastic material behavior, 𝛽(𝑇, 𝜙) characterizes stress relaxation, 𝛾(𝑇, 𝜎) governs phase
boundary propagation, 𝛿(𝑇) controls phase transition rates, and H is the mean curvature operator.

To capture the stochastic nature of the manufacturing process, we model 𝜂 as a spatially correlated
Gaussian random field with covariance structure:

E[𝜂𝑖 (𝑥, 𝑡)𝜂 𝑗 (𝑦, 𝑠)] = 𝐶𝑖 𝑗 (𝑥, 𝑦, 𝑡, 𝑠) = 𝜎𝑖𝜎𝑗 exp

(
− |𝑡 − 𝑠 |

𝜏𝑖 𝑗
−

∥𝑥 − 𝑦∥2
A𝑖 𝑗

𝑙2
𝑖 𝑗

)
where 𝜎𝑖 represents the magnitude of noise in the 𝑖-th component, 𝜏𝑖 𝑗 is the temporal correlation

length, 𝑙𝑖 𝑗 is the spatial correlation length, and A𝑖 𝑗 is a positive definite matrix that captures anisotropic
spatial correlations.
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The observation process through our multi-modal sensing system is modeled as: [21]

𝑧(𝑥, 𝑡) = H(𝑢(𝑥, 𝑡)) + 𝜖 (𝑥, 𝑡)

where H represents the observation operator that maps the state variables to sensor measurements,
and 𝜖 (𝑥, 𝑡) denotes measurement noise.

For computational implementation, we discretize the spatial domain using an adaptive finite element
mesh M = {𝐾1, 𝐾2, . . . , 𝐾𝑁 } with elements 𝐾𝑖 that concentrate resolution in regions of high gradient.
The state function is approximated using a Galerkin projection onto a function space spanned by basis
functions {𝜓 𝑗 }𝑃𝑗=1:

𝑢(𝑥, 𝑡) ≈
𝑃∑︁
𝑗=1
𝑐 𝑗 (𝑡)𝜓 𝑗 (𝑥)

The resulting system of stochastic ordinary differential equations for the coefficient functions 𝑐 𝑗 (𝑡) is:

𝑑𝑐 𝑗

𝑑𝑡
=

𝑃∑︁
𝑘=1

A 𝑗𝑘 (𝑐, 𝑡) +
𝑄∑︁
𝑙=1

B 𝑗𝑙 (𝑐, 𝑡) ¤𝑊𝑙 (𝑡)

where A 𝑗𝑘 encapsulates the discretized deterministic dynamics, B 𝑗𝑙 represents the influence of
stochastic perturbations, and ¤𝑊𝑙 (𝑡) are independent white noise processes.

We employ a splitting method for numerical time integration that treats the deterministic and
stochastic components separately:

𝑐
(𝑛+1/2)
𝑗

= 𝑐
(𝑛)
𝑗

+ Δ𝑡

𝑃∑︁
𝑘=1

A 𝑗𝑘 (𝑐 (𝑛) , 𝑡𝑛)

𝑐
(𝑛+1)
𝑗

= 𝑐
(𝑛+1/2)
𝑗

+
√
Δ𝑡

𝑄∑︁
𝑙=1

B 𝑗𝑙 (𝑐 (𝑛+1/2) , 𝑡𝑛+1/2)𝜉 (𝑛)𝑙

where 𝜉 (𝑛)
𝑙

are independent standard Gaussian random variables, and Δ𝑡 is the time step.
This mathematical framework provides a rigorous foundation for modeling the complex physical

phenomena in polymer additive manufacturing processes. The model captures the interplay between
thermal, mechanical, and material phase dynamics, while also accounting for the inherent stochasticity
of the process [22]. The adaptive spatial discretization and efficient numerical integration scheme enable
real-time simulation capabilities that support our anomaly detection framework.

3.4. Anomaly Detection Methodology

Our anomaly detection approach integrates supervised and unsupervised learning methodologies within
a hierarchical framework that matches the structure of the feature extraction module. This multi-level
detection strategy enables the identification of both known anomaly patterns and previously unobserved
process deviations. [23]

At the lowest level, statistical anomaly detection techniques are applied to individual sensor channels
to identify deviations from established baselines. These techniques include Gaussian mixture models
for multivariate data, kernel density estimation for non-parametric distribution modeling, and change
point detection algorithms for identifying temporal shifts in process behavior.

The mid-level detection layer employs supervised learning models trained on labeled datasets of
known process anomalies. We implement a gradient-boosted decision tree architecture with a multi-task
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learning objective that jointly optimizes for anomaly classification and severity estimation [24]. The
model incorporates a focal loss function that addresses class imbalance issues inherent in manufacturing
datasets where anomalous conditions are relatively rare compared to normal operation.

The high-level detection layer integrates information from lower levels and implements a deep autoen-
coder architecture for unsupervised anomaly detection. The autoencoder, consisting of five encoding
and five decoding layers with skip connections, is trained exclusively on normal process data [25].
During inference, reconstruction error serves as an anomaly indicator, with higher reconstruction error
signifying greater deviation from normal process conditions.

Temporal dependencies in process data are captured through a parallel recurrent neural network
branch that incorporates long short-term memory (LSTM) cells. This architecture enables the detection
of anomalies that manifest as temporal pattern deviations rather than instantaneous parameter excursions.
The outputs of the autoencoder and recurrent branches are combined through an attention mechanism
that dynamically weights their contributions based on contextual factors. [26]

The detection system produces a continuous anomaly score that quantifies the degree of process
deviation, along with a classification of the specific anomaly type when applicable. Threshold selection
for anomaly flagging employs a cost-sensitive approach that balances false positive and false negative
rates according to application-specific requirements.

3.5. Explanation Generation

The explainability module transforms complex model outputs into interpretable insights accessible to
manufacturing personnel with varying levels of machine learning expertise. Our approach implements
three complementary explanation methodologies that address different aspects of model transparency.
[27]

Feature attribution techniques, including integrated gradients and SHapley Additive exPlanations
(SHAP), quantify the contribution of individual input features to specific model predictions. These
techniques provide local explanations for individual anomaly detections, enabling operators to identify
the specific process parameters most strongly associated with a detected anomaly.

Concept activation vectors enable the connection between low-level features and high-level concepts
relevant to manufacturing processes [28]. Through supervised training with concept labels provided
by domain experts, the system learns to map internal network activations to human-interpretable
concepts such as "thermal inhomogeneity," "layer delamination," or "material degradation." This map-
ping facilitates communication of complex model outputs in terminology familiar to manufacturing
personnel.

Counterfactual explanations provide insights into potential corrective actions by identifying minimal
input modifications that would change the model’s prediction. For detected anomalies, the system
generates counterfactual scenarios that represent the closest non-anomalous process state, thereby
suggesting potential corrective actions that could restore normal operation.

Explanation delivery is tailored to different user roles within the manufacturing environment [29].
Operators receive simplified explanations focused on actionable insights, while process engineers access
more detailed explanations that include quantitative feature contributions and uncertainty estimates. This
role-based explanation approach ensures that information is presented at the appropriate level of detail
for the intended recipient.

4. Experimental Validation Methodology

Comprehensive validation of the proposed framework was conducted through a series of experiments
designed to evaluate both anomaly detection performance and explanation quality across diverse manu-
facturing scenarios [30]. This section details the experimental setup, evaluation metrics, and validation
procedures employed.
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4.1. Experimental Setup

Validation experiments were conducted on a custom-built polymer extrusion-based additive manufac-
turing system equipped with the multi-modal sensing infrastructure described in Section 3.1. The system
features a precision-controlled deposition head with six degrees of freedom, a temperature-controlled
build platform (ambient to 200°C), and a maximum build volume of 350×350×400 mm.

Five different polymer materials were selected to represent diverse processing characteristics: polylac-
tic acid (PLA), acrylonitrile butadiene styrene (ABS), thermoplastic polyurethane (TPU), polyethylene
terephthalate glycol (PETG), and polycarbonate (PC) [31]. Material properties varied significantly
across these polymers, with glass transition temperatures ranging from 55°C to 147°C and melt flow
indices from 6 g/10min to 28 g/10min.

Process parameters were systematically varied to create a comprehensive dataset spanning the oper-
ational envelope of each material. Deposition temperatures ranged from 180°C to 320°C, platform
temperatures from ambient to 120°C, deposition speeds from 10 mm/s to 150 mm/s, and layer heights
from 0.05 mm to 0.3 mm [32]. Additional parameters including extrusion multiplier, cooling fan speed,
and retraction settings were also systematically varied.

Controlled anomalies were intentionally introduced to evaluate detection performance. These
included material-related anomalies (contamination, moisture absorption, degradation), thermal
anomalies (heater instability, excessive cooling, thermal runaway), mechanical anomalies (stepper
motor skipping, belt slippage, nozzle clogging), and environmental anomalies (ambient temperature
fluctuations, draft conditions, humidity variations).

The complete experimental dataset comprised 1,250 fabrication runs, including 950 normal operation
runs and 300 runs with controlled anomalies [33]. Each run generated approximately 2.5 GB of multi-
modal sensing data, resulting in a total dataset size of approximately 3.1 TB. Data collection spanned a
six-month period to capture variations in ambient conditions and system behavior over time.

4.2. Evaluation Metrics

Anomaly detection performance was evaluated using several complementary metrics [34]. Detection
accuracy was assessed through precision, recall, and F1 score calculations for binary anomaly detection
(normal vs. anomalous operation). For multi-class anomaly classification, we employed macro-averaged
and micro-averaged F1 scores to account for class imbalance. Timing performance was quantified
through detection latency, defined as the time interval between anomaly occurrence and detection. [35]

Explanation quality was evaluated through a combination of objective metrics and expert assess-
ment. Explanation fidelity was quantified through fidelity-to-model scores that measure the degree to
which the explanation accurately represents the underlying model’s behavior. Explanation conciseness
was assessed through the average number of features included in generated explanations [36]. Expert
evaluation involved five polymer manufacturing specialists who rated explanations on a five-point Likert
scale across four dimensions: clarity, actionability, trustworthiness, and technical accuracy.

The framework’s computational efficiency was evaluated through processing time measurements
across key components, including feature extraction (ms per frame), anomaly detection (ms per infer-
ence), and explanation generation (ms per explanation). Memory utilization was also tracked to ensure
compatibility with edge computing implementations in manufacturing environments.

4.3. Validation Procedure

Validation followed a systematic three-phase approach designed to evaluate the framework under increas-
ingly challenging conditions [37]. In the first phase, the framework was trained and evaluated using a
standard cross-validation procedure with data from a single material (PLA) and manufacturing system.
This phase established baseline performance metrics under controlled conditions.
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The second phase evaluated cross-material generalization by training the framework on data from
four materials (PLA, ABS, TPU, and PETG) and testing on the fifth material (PC) [38]. This evaluation
assessed the framework’s ability to transfer knowledge across different material systems with varying
physical properties and processing requirements.

The third phase tested temporal generalization by training the framework on data collected during
the first four months of the experimental period and evaluating on data from the final two months. This
assessment quantified the framework’s robustness to temporal drift in system behavior and environmental
conditions.

For each phase, we implemented a comparative evaluation against four baseline approaches:
thresholding-based monitoring, statistical process control, conventional machine learning (random forest
classifier), and a standard deep learning approach (convolutional neural network without explainability
components) [39]. This comparison established the relative performance advantages of our explainable
framework compared to traditional and current state-of-the-art approaches.

5. Results and Analysis

This section presents the experimental results of our explainable machine learning framework for
polymer AM process monitoring and anomaly detection. We report performance metrics for anomaly
detection, explanation quality, and computational efficiency, followed by a detailed analysis of the
framework’s behavior across different materials and anomaly types. [40]

5.1. Anomaly Detection Performance

The framework demonstrated strong overall anomaly detection performance, achieving a precision of
97.8%, recall of 96.2%, and F1 score of 97.0% for binary anomaly detection across all materials and
process conditions. These results represent a significant improvement over baseline approaches, with
our framework outperforming thresholding-based monitoring (F1: 78.3%), statistical process control
(F1: 83.5%), conventional machine learning (F1: 91.7%), and standard deep learning (F1: 94.2%).

For multi-class anomaly classification, the framework achieved a macro-averaged F1 score of 92.5%
and a micro-averaged F1 score of 94.3% across 12 distinct anomaly categories. Performance varied by
anomaly type, with highest accuracy for thermal anomalies (F1: 96.8%) and mechanical anomalies (F1:
94.2%), followed by material-related anomalies (F1: 91.7%) and environmental anomalies (F1: 87.3%).
[41]

Detection latency analysis revealed an average detection time of 2.4 seconds from anomaly occurrence
to detection across all anomaly types. This represents a 37.5% reduction in detection time compared to
the best-performing baseline approach. The framework demonstrated particularly strong performance
for rapidly evolving anomalies, with detection times under 1 second for 68.4% of thermal runaway
events and 72.1% of mechanical failure events. [42]

False positive analysis revealed a false positive rate of 2.2%, representing a 43.2% reduction compared
to the best-performing baseline approach. This improvement is particularly significant for manufacturing
environments where false alarms can lead to unnecessary production stoppages and reduced operator
trust in monitoring systems.

5.2. Cross-Material and Temporal Generalization

Cross-material generalization testing revealed a moderate performance degradation when applying the
framework to previously unseen materials. When trained on four materials and tested on polycarbonate,
the framework achieved a binary anomaly detection F1 score of 91.6%, representing a 5.4% reduction
compared to within-material performance [43]. This degradation was primarily observed for material-
specific anomalies related to polymer rheology and thermal behavior.
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Feature attribution analysis revealed that the framework relied more heavily on acoustic emission
and force measurement features when generalizing to new materials, suggesting that these modalities
capture more material-invariant process characteristics compared to thermal and optical modalities. This
insight provides valuable guidance for sensor selection when deploying the framework in environments
with frequently changing materials. [44]

Temporal generalization testing demonstrated robust performance over time, with the framework
maintaining an F1 score of 94.2% when evaluated on data collected 4-6 months after the training
period. This represents only a 2.8% reduction compared to temporally aligned evaluation, indicating
strong resistance to temporal drift in system behavior and environmental conditions.

5.3. Explanation Quality and Usability

Quantitative evaluation of explanation quality revealed high fidelity-to-model scores averaging 0.92
across all anomaly types, indicating that the generated explanations accurately represented the underlying
model’s decision-making process. Explanation conciseness metrics showed an average of 5.3 features
included in generated explanations, with 85.7% of explanations containing fewer than 7 features [45].
This conciseness facilitates rapid interpretation by manufacturing personnel under time-constrained
conditions.

Expert evaluation results demonstrated strong overall satisfaction with the explanation quality, with
average ratings of 4.2/5 for clarity, 4.4/5 for actionability, 4.0/5 for trustworthiness, and 4.3/5 for technical
accuracy. These ratings represent significant improvements over explanations generated by baseline
approaches, which received average ratings between 2.4/5 and 3.6/5 across the same dimensions. [46]

Qualitative analysis of explanation content revealed that the framework consistently identified the
correct root causes for 89.3% of anomalies as determined by manufacturing experts. For thermal
anomalies, the framework correctly identified specific heating element malfunctions in 92.7% of cases,
distinguishing between issues related to control instability, insufficient power, and sensor feedback
errors.

User interaction analysis conducted with 12 AM operators revealed that the explanation interface
enabled faster root cause identification (average time: 37 seconds) compared to traditional monitoring
interfaces (average time: 124 seconds). Operators reported increased confidence in system outputs and
greater willingness to implement suggested corrective actions based on the provided explanations. [47]

5.4. Computational Performance

Processing time measurements demonstrated the framework’s compatibility with real-time monitoring
requirements. Feature extraction required an average of 43 ms per frame, anomaly detection required
18 ms per inference, and explanation generation required 76 ms per explanation. The complete pipeline
from data acquisition to explanation delivery completed within 150 ms, well below the 500 ms threshold
established for real-time monitoring applications in polymer AM. [48]

Memory utilization peaked at 2.4 GB during operation, with an average steady-state utilization of
1.8 GB. These requirements enable deployment on edge computing hardware commonly available in
manufacturing environments without requiring specialized high-performance computing resources.

Scalability analysis through simulated high-throughput testing demonstrated linear scaling of com-
putational requirements with increasing data volume up to 10× the baseline acquisition rate. This linear
scaling behavior ensures that the framework can accommodate future sensor upgrades with higher
sampling rates without requiring architectural modifications. [49]

6. Discussion

The experimental results demonstrate that our explainable machine learning framework achieves both
high anomaly detection performance and meaningful explainability for polymer AM process monitoring.
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This section discusses the implications of these findings, the framework’s limitations, and potential
directions for future development.

6.1. Integration of Detection Performance and Explainability

A key contribution of this work is demonstrating that high detection performance and model explain-
ability can be achieved simultaneously in manufacturing process monitoring [50]. Previous research has
often suggested a fundamental trade-off between model performance and explainability, with complex
"black-box" models typically outperforming more interpretable approaches. Our framework challenges
this perspective by implementing explainability techniques that maintain the performance advantages
of complex models while providing meaningful insights into their decision-making processes.

The hierarchical approach to both feature extraction and anomaly detection proved particularly
effective for balancing performance and explainability. By structuring the system to match the natural
hierarchy of manufacturing processes, we created integration points where domain knowledge could be
incorporated without sacrificing model flexibility [51]. This structure also facilitated the generation of
multi-level explanations that could be tailored to different user roles and expertise levels.

The concept activation vector approach demonstrated particular promise for manufacturing appli-
cations by bridging the gap between low-level sensor data and high-level process concepts familiar to
manufacturing personnel. By training the system to recognize concepts like "layer delamination" or
"thermal inhomogeneity," we enabled communication in terminology that aligns with existing man-
ufacturing knowledge, thereby reducing the barriers to adoption of advanced ML-based monitoring
systems.

6.2. Material-Specific Considerations

Performance variation across different polymer materials highlights the importance of material-specific
considerations in process monitoring systems [52]. Each polymer exhibited unique processing charac-
teristics and failure modes that influenced both detection performance and explanation requirements.
The framework demonstrated stronger performance for materials with more consistent behavior (PLA,
ABS) compared to those with higher sensitivity to environmental conditions (TPU, PC).

Feature importance analysis revealed material-specific patterns in the relative importance of differ-
ent sensing modalities [53]. For semi-crystalline materials like PLA, thermal features dominated the
decision-making process due to the importance of crystallization dynamics in determining part quality.
For amorphous materials like ABS and PC, mechanical features played a more significant role, reflecting
the importance of residual stress accumulation and relaxation phenomena in these materials.

These findings suggest that material-specific model adaptation represents a promising direction for
improving framework performance. Potential approaches include material-specific feature weighting,
transfer learning techniques that preserve general process knowledge while adapting to specific mate-
rials, and meta-learning approaches that leverage similarities between material families to improve
generalization. [54]

6.3. Temporal Aspects of Process Monitoring

The temporal dimension of process monitoring emerged as a critical factor in both detection performance
and explanation quality. Many anomalies in polymer AM develop gradually over time, with subtle
early indicators preceding catastrophic failures. The framework’s recurrent neural network components
demonstrated particular value for detecting these gradual developments, identifying pattern deviations
that would be missed by static threshold-based approaches. [55]

Explanation timing analysis revealed important considerations for real-time monitoring applications.
While immediate explanations were valuable for rapidly evolving anomalies, premature explanation
generation for gradually developing anomalies sometimes led to incomplete or misleading explanations.
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An adaptive approach that matches explanation timing to anomaly development characteristics could
potentially address this limitation.

The framework’s strong performance in temporal generalization testing suggests robustness to system
aging and environmental variations over time [56]. This robustness is particularly valuable in manufac-
turing environments where system characteristics gradually change due to component wear, material
supply variations, and environmental fluctuations.

6.4. Practical Implementation Considerations

The deployment of explainable ML systems in manufacturing environments presents several practical
challenges beyond technical performance. Our user studies with AM operators highlighted the impor-
tance of explanation presentation formats that align with existing workflows and mental models [57].
Operators expressed preference for explanations that combined visual elements (highlighting relevant
process regions or parameters) with concise textual descriptions of the identified issues.

Training data requirements represent another practical consideration for implementation. The frame-
work’s current implementation requires substantial labeled data for initial training, which may present a
barrier to adoption in environments with limited historical data. Semi-supervised learning approaches
that leverage unlabeled data more effectively could potentially reduce these requirements and accelerate
deployment in new manufacturing environments. [58] [59]

Integration with existing manufacturing execution systems (MES) and quality management systems
emerged as a key requirement for practical implementation. Future development should focus on stan-
dardized interfaces that enable seamless integration with these systems, allowing the framework to
incorporate additional contextual information and contribute to comprehensive quality documentation.

7. Conclusion

This paper presented a novel framework for explainable machine learning-based process monitoring and
anomaly detection in polymer-based additive manufacturing systems [60]. The framework integrates
multi-modal sensing, hierarchical feature extraction, advanced anomaly detection methodologies, and
explanation generation techniques to create a monitoring system that achieves both high performance
and interpretability in manufacturing environments.

Experimental validation across five polymer materials and diverse process conditions demonstrated
the framework’s efficacy, with 97.8% accuracy in anomaly detection, a 43.2% reduction in false positive
rates compared to traditional methods, and average detection latency of 2.4 seconds. The explanation
capabilities enable manufacturing personnel to rapidly identify root causes and implement appropri-
ate corrective actions, thereby enhancing both production reliability and operator trust in automated
monitoring systems.

Several key innovations contributed to the framework’s performance [61]. The hierarchical approach
to feature extraction and anomaly detection enables the system to capture process phenomena at multiple
levels of abstraction, from low-level signal characteristics to high-level process indicators. The inte-
gration of supervised and unsupervised learning methodologies provides complementary capabilities
for detecting both known anomaly patterns and previously unobserved process deviations. The multi-
faceted approach to explanation generation, including feature attribution, concept activation vectors, and
counterfactual explanations, delivers insights tailored to different user roles and expertise levels. [62]

The framework addresses several critical limitations of existing approaches to polymer AM process
monitoring. By providing interpretable explanations alongside accurate anomaly detection, it bridges
the gap between sophisticated machine learning techniques and practical implementation in produc-
tion environments. The multi-modal sensing approach captures diverse process phenomena, enabling
more comprehensive monitoring compared to single-modality approaches. The demonstrated general-
ization capabilities across materials and over time enhance the framework’s applicability in dynamic
manufacturing environments. [63]
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Future research directions include the development of semi-supervised learning approaches to reduce
training data requirements, exploration of adaptive explanation strategies that match explanation timing
to anomaly development characteristics, and integration of physics-based models to enhance both
detection performance and explanation quality for complex process phenomena. Additionally, expansion
to other polymer AM technologies beyond extrusion-based processes represents an important direction
for broadening the framework’s applicability.

The methodologies developed in this research have implications beyond polymer additive man-
ufacturing, with potential applications in diverse manufacturing domains where process monitoring
combines high complexity with stringent interpretability requirements [64]. The demonstrated synergy
between advanced machine learning techniques and explainability methods establishes a foundation
for next-generation manufacturing process monitoring systems that deliver both performance and
trustworthiness.

8. Future Research Directions

While our framework demonstrates significant advancements in explainable process monitoring for
polymer AM, several promising research directions remain for future exploration. This section outlines
key opportunities for extending and enhancing the current approach.

8.1. Adaptive Learning Architectures

The development of adaptive learning architectures represents a promising direction for enhancing
the framework’s capability to maintain performance over extended operational periods [65]. Current
implementation relies on periodic retraining to accommodate shifts in system behavior and material
characteristics. Continuous learning approaches that incrementally update model parameters based
on new observations could potentially eliminate the need for scheduled retraining while maintaining
detection accuracy.

Potential approaches include elastic weight consolidation techniques that preserve knowledge of
previously encountered scenarios while adapting to new conditions, experience replay mechanisms
that maintain representative examples from historical data during model updates, and meta-learning
architectures that explicitly optimize for adaptation capability rather than static performance [66]. These
approaches must address the challenge of catastrophic forgetting, where adaptation to new conditions
degrades performance on previously learned tasks.

Research is also needed on validation methodologies for continuously learning systems in manufac-
turing environments, where traditional hold-out validation approaches may be insufficient due to the
non-stationary nature of the underlying processes. Novel validation frameworks that account for tem-
poral dynamics and concept drift will be essential for establishing confidence in adaptive monitoring
systems.

8.2. Integration of Physics-Based and Data-Driven Approaches

The integration of physics-based process models with data-driven learning approaches offers significant
potential for enhancing both detection performance and explanation quality [67]. Physics-based models
encode domain knowledge about polymer behavior, thermal dynamics, and mechanical interactions,
providing valuable constraints and priors for data-driven components.

Potential integration approaches include physics-informed neural networks that incorporate physical
equations as soft constraints during training, hybrid architectures that combine physics-based simula-
tions with data-driven components in a modular framework, and residual modeling approaches that use
data-driven components to capture deviations between physics-based predictions and observed behav-
ior. These hybrid approaches could potentially improve generalization to new materials and process
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conditions by leveraging fundamental physical principles that remain constant across these variations.
[68]

Research challenges include developing efficient computational approaches for real-time physics-
based simulations compatible with manufacturing timescales, establishing effective information
exchange mechanisms between physics-based and data-driven components, and developing explanation
techniques that leverage the complementary strengths of both modeling paradigms.

8.3. Closed-Loop Process Control

Extending the current monitoring framework to closed-loop process control represents a natural pro-
gression that could significantly enhance manufacturing reliability and part quality. By integrating
the detection and explanation capabilities with control algorithms, the system could not only identify
process anomalies but also implement corrective actions to mitigate their impact.

Research directions include the development of explainable reinforcement learning approaches for
process control that provide transparency into control decisions, exploration of multi-objective opti-
mization frameworks that balance quality, productivity, and resource utilization, and investigation of
uncertainty-aware control strategies that account for confidence levels in anomaly detection when
determining control responses. [69]

Critical challenges include ensuring control stability under uncertain process conditions, manag-
ing the computational requirements of real-time control optimization, and developing appropriate
human oversight mechanisms that maintain operator authority while leveraging automated control
capabilities. Safety considerations are particularly important when implementing closed-loop control
in high-energy manufacturing processes where inappropriate control actions could potentially create
hazardous conditions.

8.4. Multi-Scale Temporal Modeling

Enhancing the framework’s capability to capture process phenomena across multiple temporal scales
represents an important direction for future development [70]. Current implementation primarily focuses
on short-term dynamics (seconds to minutes), with limited capability to model long-term trends and
cyclical patterns that may develop over hours or days of continuous operation.

Potential approaches include hierarchical temporal models that explicitly represent different
timescales, attention mechanisms that dynamically focus on relevant temporal contexts based on current
process conditions, and memory-augmented architectures that maintain persistent representations of his-
torical process behavior. These approaches could enhance detection of gradually developing anomalies
that manifest over extended periods before reaching critical thresholds.

Implementation challenges include managing the increased computational and memory require-
ments associated with long-term temporal modeling, developing appropriate feature representations
that capture relevant information across different timescales, and designing explanation techniques that
effectively communicate temporal relationships to manufacturing personnel. [71]

8.5. Broader Material and Process Applicability

Extending the framework to additional polymer AM technologies and material systems represents an
important direction for increasing its industrial impact. While the current implementation focuses on
extrusion-based processes and thermoplastic materials, the underlying methodologies could potentially
be adapted to other technologies including powder bed fusion, vat photopolymerization, and material
jetting processes.

Research is needed to identify sensing modalities and feature extraction approaches appropriate
for these diverse processes, adapt anomaly detection architectures to their specific characteristics, and
develop explanation techniques that align with the mental models of specialists in these domains [72].
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Particular attention should be given to processes involving reactive polymers where chemical reaction
kinetics introduce additional complexity into process monitoring.

The extension to multi-material and functionally graded manufacturing processes presents additional
challenges related to material interface dynamics, property transitions, and complex spatio-temporal
process interactions. These advanced manufacturing approaches are gaining increasing industrial rele-
vance but lack robust monitoring methodologies capable of ensuring consistent quality across material
boundaries and property gradients.

9. Ethical Considerations and Societal Impact

The development and deployment of explainable machine learning systems for manufacturing process
control raises important ethical considerations that warrant careful attention [73]. This section discusses
key ethical dimensions and potential societal impacts of the research presented in this paper.

9.1. Workforce Implications

The implementation of advanced monitoring and control systems in manufacturing environments has
significant implications for the manufacturing workforce. While these systems enhance production
reliability and part quality, they also change the nature of operator roles and may impact employment
patterns within the industry. [74]

Our research approach has emphasized human-machine collaboration rather than replacement,
designing explanation interfaces that augment operator capabilities rather than diminish their role.
User studies indicate that this approach enhances operator engagement and job satisfaction by reducing
frustrating troubleshooting activities while maintaining their authority in decision-making processes.

Future research should continue to prioritize collaborative design approaches that involve manu-
facturing personnel throughout the development process. Attention should also be given to workforce
development programs that equip operators with the skills necessary to effectively work alongside
advanced monitoring systems, ensuring that technological advancement leads to workforce enhancement
rather than displacement. [75]

9.2. Data Privacy and Security

Manufacturing process data can contain sensitive information related to proprietary materials, process
parameters, and product designs. The collection, storage, and analysis of this data for monitoring
purposes introduces potential privacy and security concerns that must be addressed through appropriate
technical and organizational measures.

Our implementation incorporates several privacy-preserving features, including on-edge processing
that minimizes data transmission, anonymization techniques for human-related process interactions,
and access control mechanisms that restrict explanation detail based on user authorization levels [76].
These measures help balance the competing requirements of data utilization for process improvement
and protection of sensitive manufacturing information.

Future research should explore advanced privacy-preserving machine learning techniques, includ-
ing federated learning approaches that enable model training across organizational boundaries without
sharing raw data, differential privacy mechanisms that provide formal guarantees against informa-
tion leakage, and secure multi-party computation frameworks that enable collaborative analysis while
maintaining data confidentiality.

9.3. Transparency and Accountability

The integration of machine learning systems into manufacturing decision processes raises important
questions about transparency and accountability. When process interventions or quality decisions are
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influenced by algorithmic recommendations, clear accountability frameworks are necessary to determine
responsibility for outcomes and ensure appropriate oversight. [77]

Our explainable machine learning approach represents a step toward addressing these concerns by
providing visibility into the rationale behind system recommendations. However, explanation alone does
not fully resolve accountability challenges, particularly in complex manufacturing environments where
multiple automated and human actors influence outcomes.

Future research should explore frameworks for algorithmic accountability in manufacturing contexts,
including audit methodologies that verify system behavior against established requirements, docu-
mentation approaches that create clear records of decision processes, and governance structures that
establish appropriate human oversight for automated systems. These frameworks should adapt existing
accountability principles to the specific characteristics of manufacturing environments, where real-time
operation and safety considerations introduce unique challenges. [78]
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