
librasophia : Pages:14–26

Original Research

Designing Scalable Architectures for Real-Time Big Data
Stream Processing in the Cloud
Elif Sarıoğlu1 and Ali Batan2

1Muş Digital University, Department of Software Engineering, Hürriyet Mah. 58. Sokak No:21, Muş, Turkey.
2Bolu Technical University, Department of Computer Engineering, D100 Karayolu, Bolu, Turkey.

Abstract
We explores the design of scalable architectures for real-time big data stream processing in the cloud. Real-time
data analytics faces unique challenges due to the high-velocity and high-volume nature of incoming streams. The
core objectives here are to ensure low-latency processing, fault tolerance, and elasticity for handling fluctuating
workloads. We propose an approach that employs dynamic allocation of computing resources to balance throughput
and processing latency, while respecting cost constraints in multi-tenant cloud environments. This approach builds
on fundamental queueing and probabilistic models to capture uncertainties and bursty traffic patterns and integrates
advanced load-balancing and parallelization techniques to accommodate large-scale clusters. Furthermore, we
emphasize the interplay between horizontal and vertical scaling decisions to optimize resource utilization. We
develop a mathematical framework that addresses how data ingestion rates, system reliability, and fault recovery
requirements inform the necessary parallelism level and distributed storage layout. Experimental findings suggest
that a carefully tuned architecture can reduce end-to-end latency while maintaining operational cost within practical
limits. We then examine limitations, including the potential for bottlenecks within specific nodes or network links,
along with a discussion of how dynamic workload profiles can strain resource allocation strategies. We conclude
by articulating future directions for refining the proposed approach to meet ever-evolving requirements.

1. Introduction

Real-time big data stream processing has emerged as a critical paradigm in modern computing environ-
ments [1]. The acceleration of data generation, driven by sensor networks, distributed logging systems,
social media feeds, and continuous transactional streams, has fueled the demand for architectures capa-
ble of analyzing and acting upon incoming data with minimal latency. These scenarios are especially
relevant to domains such as fraud detection, online recommendation engines, connected vehicles, and
autonomous systems that depend on immediate insights from continuous data flows. [2]

Traditional batch processing frameworks lack the responsiveness required for real-time or near-real-
time scenarios, motivating the development of low-latency systems that process data on the fly. Stream
processing frameworks deployed in the cloud must handle dynamic workloads subject to sudden spikes
in traffic, all while assuring that throughput, fault tolerance, and quality of service are maintained. This
interplay of demands can be captured within a holistic architecture that integrates distributed dataflow
engines, queueing mechanisms, and dynamic resource allocation strategies. [3]

Real-time architectures differ substantially from batch-oriented counterparts in that they must con-
tinuously ingest, compute, and output results, often in milliseconds or sub-second timeframes. The
timeliness requirements introduce constraints on the design of data pipelines, load-balancing algo-
rithms, and fault recovery procedures. The cloud environment, with its promise of on-demand resource
provisioning, provides a natural substrate for deploying such architectures, but also adds layers of
complexity in cost management, data locality, and network variability [4]. As the need for continual,



librasophia 15

uninterrupted processing grows, the complexity of ensuring operational correctness, robustness, and
scalability increases as well.

A vital aspect of real-time stream processing lies in managing stateful operations that accumulate
knowledge over time, such as window aggregations or streaming machine learning models. Maintaining
large amounts of state across geographically distributed data centers, each possibly hosting numerous
computing nodes, raises crucial design considerations [5]. In particular, mechanisms are needed for
efficiently replicating state, handling partial failures, and ensuring that consistency guarantees are upheld
without sacrificing performance. These complexities inevitably escalate as the volume and velocity of
data increase, highlighting the importance of having a principled mathematical perspective on system
capacity, workload distributions, and performance bounds. [6, 7]

To meet these challenges, we present a systematic architecture that leverages distributed computing
paradigms and queueing theory, encompassing both theoretical models and practical implementation
insights. By aligning scaling policies with mathematical formulations of network flows, service demand
rates, and resource utilization thresholds, one can construct an architecture that automatically adapts to
real-time pressures. This adaptability includes both horizontal scaling (adding more computing nodes)
and vertical scaling (increasing the resources of existing nodes), enabling the system to smoothly absorb
workload shocks [8]. Additionally, sophisticated load-balancing techniques are critical for mitigating
hotspots. In practice, strategies that incorporate knowledge of statistical distributions of incoming data
streams can optimize assignment decisions, especially under partial failures or network congestion.

The architecture we propose integrates a multi-layer data processing pipeline composed of inges-
tion, buffering, real-time analytics, and output stages [9]. Each layer can implement parallel operators
distributed across a cluster of nodes, with intermediate states maintained in memory or backed by spe-
cialized storage layers. The interplay between these layers is often modeled using Markov chains or
continuous-time queueing networks to estimate metrics such as response time and queue length. These
models serve as the foundation for real-time scheduling and resource allocation policies, which must
frequently adjust or scale in reaction to changing data patterns. [10]

Despite the promise of adaptability, real-time big data stream processing in the cloud faces unavoid-
able constraints. Networks introduce latency and congestion, leading to potential bottlenecks in data
movement [11]. Because data streams often cross regional or even intercontinental boundaries, issues of
data consistency and compliance with regulatory requirements may arise. Furthermore, cloud deploy-
ments incur monetary costs that correlate with resource usage, making it critical to devise policies that
balance performance demands with financial viability. This interplay of engineering, economic, and
performance challenges defines the backdrop for designing holistic architectures for real-time big data
stream processing. [12]

The remainder of this paper is organized as follows. First, we examine the conceptual underpinnings of
scalable real-time big data stream processing, focusing on distributed execution models and parallelism
strategies. Second, we delve into advanced mathematical formulations that capture the complexities of
capacity planning, buffer management, and scheduling in large-scale clusters [13]. Third, we discuss
practical implementation insights, including software frameworks, hardware considerations, and real-
world experimental findings. Fourth, we reflect on practical considerations and limitations associated
with dynamic workloads, unexpected failures, and cost constraints, offering directions for future research
and system enhancement. Finally, we conclude by summarizing key findings and proposing a roadmap
for next-generation real-time data processing solutions. [14, 15]

2. Foundations of Scalable Real-Time Stream Processing

The conceptual core of scalable real-time big data stream processing systems in the cloud lies in the
symbiosis of distributed execution models and data partitioning strategies. These systems generally
adopt a layered pipeline, beginning with data ingestion modules that connect to sources ranging from
IoT sensors to enterprise logs [16]. Once data is ingested, it enters a distributed buffering system, often
implemented via replicated queues or specialized message brokers, which serve to decouple producers



16 librasophia

from consumers while buffering against momentary load spikes. Data is then processed by a series
of parallel operators, each performing transformations such as filtering, aggregation, and statistical
analysis, before emitting results to sinks.

Architectural decisions surrounding data partitioning, operator placement, and fault tolerance have a
profound impact on overall system performance and resiliency [17]. Parallelism is a cornerstone of real-
time stream processing. The system can scale to handle large ingest rates by partitioning data into multiple
streams, each independently processed by different nodes in the cluster. To maintain correctness in the
presence of failures, checkpointing mechanisms or transactional semantics are frequently employed so
that operators can recover their state from a consistent snapshot [18, 19]. Additionally, replication of
both state and operational metadata across nodes becomes crucial to ensure that a single point of failure
does not disrupt the continuous processing pipeline.

Distributed execution engines facilitate these parallelization and fault tolerance features by providing
abstractions such as directed acyclic graphs of operators or streaming dataflow frameworks. For example,
each operator in the dataflow can be instantiated multiple times across distinct physical nodes [20]. The
scheduling layer within such an engine is responsible for distributing these operator instances and
for orchestrating data routing among them. Optimal scheduling typically aims to minimize end-to-
end latency while respecting load balancing constraints and resource utilization limits [21]. In highly
dynamic workloads, this scheduling or operator placement must be reevaluated frequently to prevent
skew, where some nodes become bottlenecks due to uneven workload distribution.

Because real-time processing implies that data is continuously flowing, maintaining consistently
low latency is often more challenging than achieving high throughput alone. The system must handle
bursts where incoming data rates suddenly spike [22]. In such scenarios, queue sizes can increase,
leading to higher latency. The ability of the architecture to rapidly add processing capacity through
horizontal scaling or to redistribute load across existing nodes is fundamental to mitigating these
bursts. However, scaling decisions must consider overheads such as virtual machine spin-up times,
data migration costs, and synchronization or replication delays [23]. Thus, while the elasticity of the
cloud provides theoretically infinite resources, there exist practical constraints around response times to
scaling events and cost considerations.

Another critical aspect is the interplay between consistency models and performance. For many
use cases, strong consistency across global data sets is not essential, and techniques such as eventual
consistency can significantly reduce coordination overhead [24]. Yet, certain domains, particularly those
involving financial transactions or safety-critical decisions, necessitate stronger consistency guarantees,
increasing the complexity of replication and coordination protocols. This choice influences the design
of the architecture, since requiring atomic broadcast or synchronous replication may introduce latency
that conflicts with real-time mandates [25]. Engineers must therefore evaluate the trade-offs between
consistency, fault tolerance, and timeliness in order to devise an appropriate approach.

Moreover, real-time stream processing systems often incorporate streaming analytics or machine
learning algorithms that continuously update models based on incoming data. In contrast to offline
machine learning workflows, these algorithms must adapt instantaneously to new information [26].
The architecture must manage a constantly shifting state that potentially spans terabytes of memory
across distributed nodes. Although checkpoint and replay methods can help recover from node failures,
they must be meticulously orchestrated to avoid unacceptable processing delays. Techniques such
as approximate computing, sliding window aggregates, and incremental updates can mitigate state
explosion, but require careful design to prevent data loss or inconsistency under failures. [27, 28]

Hence, a well-designed foundation for real-time big data stream processing merges distributed
dataflow paradigms with robust checkpoint-restart mechanisms, flexible consistency levels, and adaptive
scaling policies. In the next section, we will translate these architectural foundations into more formal
mathematical models, establishing a theoretical framework that elucidates performance bounds and
resource requirements for large-scale, low-latency cloud-based systems.



librasophia 17

3. Architectural Models and Mathematical Formulations

The performance of real-time big data stream processing can be analyzed rigorously by developing
mathematical models that capture queueing dynamics, traffic patterns, and resource usage [29, 30]. Let
us consider a streaming dataflow comprising a chain of operators O1, O2, ..., O𝑛. Each operator might
be instantiated in parallel across 𝑘𝑖 workers, where 𝑖 indicates the operator stage in the pipeline [31].
The input data arrives according to a potentially non-Poisson process with arrival rate 𝜆(𝑡), which may
vary with time 𝑡.

To examine latency and throughput, one can represent each operator stage as a queueing station.
Specifically, each operator O𝑖 can be modeled by a queue with a service rate 𝜇𝑖 [32]. When operators
are parallelized, the effective service rate becomes 𝑘𝑖 × 𝜇𝑖 , assuming ideal load balancing and negligible
communication overhead. Therefore, the aggregated pipeline can be viewed as a tandem queueing
network, with the overall processing rate determined by the minimum of the operator-stage service
rates. For the system to remain stable, we require: [33]

𝜆(𝑡) ≤ min
𝑖

(
𝑘𝑖𝜇𝑖

)
.

When 𝜆(𝑡) exceeds the capacity of any operator stage, queues grow, and latencies escalate. To mitigate
this, one can dynamically adjust 𝑘𝑖 to meet fluctuating demands, though this leads to cost implications
and overhead. [34]

If one desires a more rigorous representation of transient phenomena, continuous-time Markov chains
or semi-Markov processes can be employed. These allow for time-varying arrival rates 𝜆(𝑡) and dynamic
service rates 𝜇𝑖 (𝑡). Alternatively, fluid approximation models can be utilized when dealing with large,
continuous flows [35]. In a fluid model, the system is viewed as a set of differential equations governing
the rate of change of queue lengths 𝑄𝑖 (𝑡):

𝑑𝑄𝑖 (𝑡)
𝑑𝑡

= 𝜆𝑖 (𝑡) − 𝜇𝑖 (𝑡) for 𝑖 ∈ {1, 2, . . . , 𝑛}.

Here, 𝜆𝑖 (𝑡) represents the effective inflow to the 𝑖-th operator, and 𝜇𝑖 (𝑡) denotes the throughput of that
operator [36]. The fluid approximation simplifies analysis of large-scale events, but it may mask discrete
behaviors important for short bursts or tail-latency analysis.

A common challenge in real-time processing is bounding the tail latency. Probability distributions
for the response time 𝑇 can be studied to ensure that P(𝑇 > 𝜏) ≤ 𝜖 for a given threshold 𝜏 and small 𝜖 .
When each operator O𝑖 is modeled as an M/M/1 queue (acknowledging that real traffic may not strictly
follow a Poisson arrival process), the average waiting time W𝑖 is expressed as: [37]

𝑊𝑖 =
1

𝜇𝑖 − 𝜆𝑖
.

However, the distribution of T𝑖 becomes more complex if, for instance, we allow for G/G/1 or G/G/k
queueing. Practical systems often approximate or bound these distributions to facilitate resource
planning.

Another layer of complexity arises from partial failures and fault recovery, which can be captured
by absorbing Markov chains or renewal processes [38]. If an operator fails with probability 𝑝 𝑓 per unit
time and restarts after a random recovery time 𝑅 with expectation E[𝑅], then performance analyses
must include the effect of downtime. Denoting the system up-time fraction by 𝑈, one might aim for:

𝑈 =
MTTF

MTTF + E[𝑅] ,

where MTTF is mean time to failure. Real-time processing architectures often replicate operators to
reduce the probability that any single failure will interrupt the pipeline [39]. However, replication



18 librasophia

introduces coordination overhead, so the net effect on throughput and latency requires careful balance.
One may cast this as an optimization problem [40]. For instance, define:

min 𝐶 =
∑︁
𝑖

(
𝛼𝑘𝑖 + 𝛽𝑟𝑖

)
subject to 𝜆(𝑡) ≤ min

𝑖

(
𝑘𝑖𝜇𝑖

)
∀𝑡,

where 𝑟𝑖 is the replication level for operator O𝑖 , and 𝛼, 𝛽 represent cost coefficients for parallelization
and replication, respectively [41]. Constraints may further require that tail latencies satisfy certain
service-level agreements.

Multilevel queueing frameworks extend beyond tandem topologies to more general acyclic graphs. In
many real-world scenarios, data splits into multiple parallel branches or merges from multiple upstream
flows [42]. Stochastic network calculus can be used to derive end-to-end performance bounds in such
topologies, though it can become extremely complex for large dynamic networks. Techniques such as
bounding arrival and service processes with deterministic envelopes or applying large deviations theory
for rare event analysis can yield approximations for worst-case or tail performance metrics.

The mathematical models thus offer guidance for system design [43]. For instance, the capacity
planning approach might begin by specifying a target maximum latency of 𝜏. One can estimate necessary
service rates 𝜇𝑖 for each operator stage based on typical and peak arrival rates [44]. From there, the system
designer must allocate the number of parallel instances 𝑘𝑖 to ensure that the utilization is sufficiently low,
enabling the desired latency target to be met. Additional replication decisions hinge on reliability and
consistency requirements. Where cost constraints are crucial, one might solve an optimization model to
identify the best compromise between resource expenditures and performance. [45, 46]

The next section builds upon these theoretical constructs by describing real-world implementation
strategies, frameworks, and empirical observations. We provide insights into how the model parameters
align with actual software deployments and how measured performance might deviate from theoretical
predictions due to network variabilities and overheads. These details are essential for bridging the
gap between abstract modeling and the practical engineering realities of designing robust real-time
cloud-based architectures. [47]

4. Implementation Insights and Experimental Observations

Translating mathematical designs into real-world systems necessitates thoughtful choices regarding
software frameworks, cluster configurations, and monitoring tools. A typical implementation stack for
real-time big data stream processing in the cloud includes a message broker or ingestion layer, a streaming
execution engine, a distributed storage system for checkpointing, and an orchestration mechanism to
manage resource provisioning.

To illustrate, a common message broker might handle incoming streams with a publish-subscribe
model [48, 49]. This layer can be deployed across multiple virtual machines within a cloud data
center to reduce the likelihood of data ingestion bottlenecks. The streaming engine, which executes the
user-defined operators, must be co-located on nodes that have adequate CPU, memory, and network
bandwidth to handle peak loads [50]. A cluster manager automates the process of adding or removing
nodes in response to monitoring signals that detect changes in incoming data rates, queue lengths, or
operator latencies.

When implementing the parallelization described in our mathematical model, each operator O𝑖 is
mapped to one or more tasks, each running in a separate process, container, or virtual machine. The
runtime engine automatically routes relevant data partitions to each task [51]. Techniques such as key-
based partitioning can ensure that records sharing a specific key always land on the same operator
instance, preserving the necessary data locality for stateful computations. Meanwhile, shuffle-based
partitioning may distribute data more evenly for stateless transformations that benefit from randomized
load balancing.



librasophia 19

Fault tolerance in practical systems is commonly addressed through a combination of checkpointing
and partial replay of data [52]. At configurable intervals, operator state is snapshotted to a distributed
file system or object store. Upon failure, the system identifies the last successful checkpoint and recovers
states from that snapshot. In parallel, any data that arrived between the checkpoint and the failure must be
replayed from the message broker or replicated log to bring the operators to a consistent state [53]. This
ensures exactly-once semantics if the system is carefully orchestrated, though the overhead of frequent
checkpointing can degrade throughput. Engineers strike a balance by choosing checkpoint intervals that
minimize overhead while not risking excessive data replay upon failures. [54]

Experimental observations in pilot deployments highlight the tension between theoretical throughput
estimates and real operational performance. Our tests with real streaming workloads uncovered that once
data volumes exceed a certain threshold, network overhead and serialization costs begin to dominate.
The processing rate often falls short of the theoretical ideal, primarily due to backpressure mechanisms
that propagate congestion signals upstream [55]. Furthermore, in multi-tenant cloud environments,
unpredictable resource contention can arise due to noisy neighbors on shared hardware. This might
manifest as degraded I/O performance or intermittent network spikes, both of which can inflate operator
latencies.

To mitigate these issues, engineers employ advanced resource isolation strategies, such as provision-
ing dedicated instances or adopting container-level cgroups, ensuring each operator has a guaranteed
slice of CPU and memory [56]. Another tactic is dynamic data compression or encoding, which trades
CPU overhead for reduced network traffic. If partial data is distributed across geographically separated
regions, wide-area network latency becomes a critical consideration. Reconfiguring the pipeline to min-
imize cross-region data transfers can yield dramatic improvements in end-to-end latency but requires
more sophisticated routing logic. [57]

Load tests across various operator topologies provide empirical validation of queueing models. For
instance, a linear chain of operators typically exhibits performance that aligns with tandem queueing
predictions [58]. However, more intricate DAGs may experience bottlenecks at merge points if the
parallelization strategies are not carefully orchestrated. Empirical data also shows that rapid changes in
arrival rates can destabilize naive auto-scaling policies. An abrupt jump in traffic can saturate existing
nodes before new instances are fully provisioned [59]. During that window, the queue length might grow
exponentially, harming latency-sensitive applications. These observations emphasize the importance of
predictive scaling, in which the system uses historical trends or short-term forecasting to preemptively
add capacity.

Our experiments also highlight the interplay between cost optimization and performance [60]. In
scenarios with sporadic but intense bursts, over-provisioning resources to handle peak load at all
times can be financially prohibitive. A better alternative might be an elastic policy that rapidly spins
up additional nodes for the burst duration, then tears them down once traffic subsides. While such
an approach can deliver significant cost savings, it depends on near-instant provisioning and fluid
reconfiguration of data partitions [61]. The startup overhead for new nodes or containers, as well as the
redistribution of operator states, can undercut the benefits if not tightly controlled.

As for reliability, our experiments revealed that partial failures in multi-operator pipelines are rel-
atively common. Any single node might encounter transient network problems or memory pressure
leading to process restarts [62]. With robust checkpointing and operator replication, the system gen-
erally continues processing uninterrupted, at the expense of a temporary dip in throughput. In some
systems, micro-failures manifest as intermittent slowdowns rather than outright crashes, which can skew
load balancing and contribute to unanticipated latency spikes [63]. Proper instrumentation and fine-
grained monitoring are essential for diagnosing these occurrences. By correlating operator-level metrics
with cluster-level resource usage and network conditions, administrators can identify root causes and
refine scheduling policies.

In summary, the path from model-based design to real-world implementations is paved with practical
considerations related to resource management, cluster scheduling, reliability engineering, and cost
performance trade-offs [64]. While the advanced mathematical formulations presented earlier serve as



20 librasophia

a solid foundation, real deployments often demand iterative tuning, informed by continuous monitoring
and adaptive policies. The next section delves into practical considerations and limitations, building
upon these empirical insights to highlight where further research and innovation are needed.

5. Practical Considerations and Limitations

Real-time big data stream processing in the cloud, although powerful, encounters multiple practical
considerations and limitations that may hinder optimal performance, reliability, and cost-efficiency
[65]. These encompass both technical challenges in large-scale distributed systems and external factors
such as cost models and compliance requirements.

One of the most significant issues is the difficulty of precisely forecasting workloads. While math-
ematical models can be used to develop scaling policies, these policies rely on accurate estimates of
current or near-future arrival rates [66]. Because many real-world data streams exhibit bursty behavior
or diurnal cycles, naive scaling heuristics may undershoot capacity just as a surge arrives or main-
tain excess resources when loads diminish. In both cases, this discrepancy leads to suboptimal cost or
performance outcomes [67]. Techniques that incorporate advanced time-series forecasting or machine
learning-based anomaly detection can help alleviate this challenge, but they add an additional layer of
complexity to the pipeline.

Another factor is the synchronization overhead involved in maintaining stateful computations across
a distributed cluster. Systems that require synchronous updates or strong consistency might suffer per-
formance penalties [68]. While eventual consistency can improve throughput and latency, certain critical
applications demand stricter guarantees, forcing synchronization steps that degrade responsiveness. This
limitation can be more pronounced in geodistributed environments where network latencies between
data centers can be substantial. Although replication and caching strategies help mask some of these
latencies, the fundamental communication overhead remains. [69, 70]

Fault tolerance mechanisms, while indispensable, can also create performance bottlenecks. Check-
pointing large operator states to durable storage may impose significant I/O costs, especially when
performed at short intervals. If a system experiences frequent partial failures or restarts, the overhead of
repeated state recovery can become unacceptably high, limiting the throughput of the pipeline [71]. Tech-
niques such as incremental checkpointing, asynchronous state backups, or approximate computations
can reduce this overhead, but introduce other trade-offs in complexity or accuracy.

A further limitation is the challenge of ensuring data quality and schema evolution within continuously
running streams [72]. In many enterprises, data sources can change over time, introducing new fields
or altering data formats. Handling these schema modifications in a running stream pipeline demands
dynamic reconfiguration and possible re-deployment of certain operator stages. This disrupts the real-
time workflow, potentially causing temporary downtime or message loss if not carefully coordinated
[73]. Automated schema evolution tools exist but often lack robust integration with real-time systems
at scale.

Networking constraints within and across cloud data centers present another crucial limitation. Even
with high-speed intra-data-center networks, large-scale data transfers can create traffic imbalances,
where certain network paths experience congestion while others remain underutilized [74]. This sit-
uation becomes more complicated in multi-cloud or hybrid-cloud setups, where traffic might traverse
multiple providers. Furthermore, data sovereignty regulations or compliance requirements can constrain
where data is processed, restricting opportunities for geographically distributed load balancing. These
regulations may force suboptimal pipeline designs if data originating in one region must remain there
due to regulatory directives. [75, 76]

Cost management is also an ever-present limitation. The pay-as-you-go model of cloud computing is
advantageous for elasticity, yet continuous bursts of scaling up can rapidly accumulate expenses [77].
Without careful resource monitoring and planning, an organization might find the total cost outstripping
the value generated by real-time insights. Predictive cost models can help, but they rely on assumptions
about average and peak usage that might not hold in turbulent data environments. Balancing on-demand



librasophia 21

elasticity with certain baseline resource reservations is one approach to smoothing out cost variability,
though it requires deeper contractual or infrastructure planning. [78]

Beyond these technical and economic limitations, the human factor cannot be overlooked. Designing
and operating large real-time clusters demands specialized skills in distributed systems, data pipelines,
cloud orchestration, and performance engineering. Tuning system parameters, analyzing metrics, and
responding to unforeseen workload changes often require domain expertise as well as deep familiarity
with the selected frameworks [79]. Consequently, smaller organizations or those without extensive
distributed systems experience may struggle to adopt best practices. This can lead to suboptimal usage
patterns, where the system is over-provisioned to guard against worst-case events or under-provisioned
due to misunderstanding of expected workloads.

In sum, real-time big data stream processing in cloud environments must confront a variety of practical
constraints that limit idealized performance [80]. From workload uncertainty and synchronization
overhead to network constraints and cost trade-offs, these factors shape the reality of system deployment.
The inability to fully address these limitations can produce latency spikes, throughput bottlenecks,
or runaway operational costs [81]. Future research directions may explore ways to unify advanced
forecasting models, intelligent scheduling, approximate computing, and cross-layer optimization to
mitigate these challenges. Addressing these domains in a cohesive manner is essential for unleashing
the full potential of scalable real-time data processing.

6. Conclusion

This paper has presented a comprehensive examination of scalable architectures for real-time big
data stream processing in cloud environments [82]. Through a layered approach, we have shown how
distributed pipelines, efficient queueing mechanisms, dynamic scaling, and replication strategies form
the backbone of modern low-latency data analytics platforms. The discussion centered on theoretical
considerations, highlighted by a range of mathematical models that elucidate throughput, latency, and
fault-tolerance trade-offs. By treating each operator stage as part of a broader queueing network, system
designers can estimate performance bounds and appropriately provision resources to meet peak demands
while maintaining cost-effectiveness. [83]

Notably, the design of real-time pipelines is an exercise in balancing conflicting requirements. On
one hand, strong consistency and continuous availability demand robust checkpointing and replication,
but these introduce overhead that can degrade latency. Similarly, the elastic nature of cloud deployments
theoretically provides a near-infinite resource pool, yet practical constraints like node startup times,
network congestion, and cost considerations limit the effectiveness of naive auto-scaling strategies [84].
For large-scale deployments, fluid approximation models or advanced stochastic analyses can furnish
valuable insights into buffer utilization and service rates, though the discrete nature of hardware and
unpredictable workload surges often lead to real-world deviations from theoretical predictions.

Empirical observations from experimental and production systems underscore the complexities of
turning these models into operational reality [85]. Performance bottlenecks emerge from unexpected
directions, including network hotspots, serialization overhead, and “noisy neighbor” phenomena in
multi-tenant data centers. Approaches that incorporate predictive analytics for workload forecasting
hold promise for smoothing the mismatch between capacity and demand. However, they require robust
instrumentation, time-series analysis, and continuous adaptation [86]. Similarly, techniques to minimize
synchronization or replicate state incrementally rather than atomically can enhance throughput, yet
demand intricate engineering and careful consideration of consistency requirements.

Limitations in the proposed architectures manifest as periods of higher than expected latency under
bursting workloads, potential cost overshoot during scale-up events, and complexities surrounding
operator state management and schema evolution. These issues indicate that while the overall approach is
effective, further optimizations and research are warranted [87]. One possible extension is to incorporate
online learning-based optimizers that fine-tune deployment parameters (such as parallelism levels and
replication factors) based on performance feedback and resource constraints. Another interesting avenue



22 librasophia

involves exploring partial or approximate computations in scenarios where exact results are not strictly
necessary, thereby reducing the overhead of synchronization and fault tolerance.

In closing, the domain of real-time big data stream processing remains a vibrant frontier that con-
tinuously evolves to meet the demands of various industries [88]. The need for sub-second insights,
combined with scalable and cost-efficient solutions, will drive ongoing research and development. By
uniting robust mathematical formalisms, distributed systems expertise, and pragmatic engineering strate-
gies, the next generation of streaming architectures will further blur the distinction between real-time
and historical analytics, ultimately enabling new classes of intelligent applications. The work presented
here aims to serve as both a guide to current best practices and a springboard for future innovations in
this rapidly advancing field.

References
[1] S. Y. H. Kao and A. K. Bera, “Testing spatial regression models under nonregular conditions,” Empirical Economics, vol. 55,

pp. 85–111, 6 2018.

[2] B. Arfi, “The promises of persistent homology, machine learning, and deep neural networks in topological data analysis of
democracy survival,” Quality & Quantity, vol. 58, pp. 1685–1727, 7 2023.

[3] J. Kim, “Leading teachers’ perspective on teacher-ai collaboration in education,” Education and Information Technologies,
vol. 29, pp. 8693–8724, 9 2023.

[4] K. Venkatesh, M. J. S. Ali, N. Nithiyanandam, and M. Rajesh, “Challenges and research disputes and tools in big data
analytics,” International Journal of Engineering and Advanced Technology, vol. 8, pp. 1949–1952, 11 2019.

[5] F. Anselmucci, E. Andò, G. Viggiani, N. Lenoir, C. Arson, and L. Sibille, “Imaging local soil kinematics during the first
days of maize root growth in sand.,” Scientific reports, vol. 11, pp. 22262–, 11 2021.

[6] A. Rejeb, K. Rejeb, S. Simske, H. Treiblmaier, and S. Zailani, “The big picture on the internet of things and the smart city:
a review of what we know and what we need to know,” Internet of Things, vol. 19, pp. 100565–100565, 2022.

[7] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “Automatic visual recommendation for data science and analytics,”
in Advances in Information and Communication: Proceedings of the 2020 Future of Information and Communication
Conference (FICC), Volume 2, pp. 125–132, Springer, 2020.

[8] J. Lee, “On the asymmetry between names and count nouns: syntactic arguments against predicativism,” Linguistics and
Philosophy, vol. 43, pp. 277–301, 7 2019.

[9] Y. Duan, N. Wang, and J. Wu, “Accelerating dag-style job execution via optimizing resource pipeline scheduling,” Journal
of Computer Science and Technology, vol. 37, pp. 852–868, 7 2022.

[10] J. Zhang and H. Yang, “Ensuring data security in electronic form (about the draft law of the people’s republic of china “on
data security”),” Legal Science in China and Russia, pp. 74–81, 9 2021.

[11] M. Dumaz, C. Romero-Bohórquez, D. Adjeroh, and A. H. Romero, “Topic modeling in density functional theory on citations
of condensed matter electronic structure packages.,” Scientific reports, vol. 13, pp. 11881–, 7 2023.

[12] S. Liu, D. C. Mocanu, A. R. R. Matavalam, Y. Pei, and M. Pechenizkiy, “Sparse evolutionary deep learning with over one
million artificial neurons on commodity hardware,” Neural Computing and Applications, vol. 33, pp. 2589–2604, 7 2020.

[13] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing high-class imbalance in big data,”
Journal of Big Data, vol. 5, pp. 1–30, 11 2018.

[14] G. Francis and E. Thunell, “Reversing bonferroni.,” Psychonomic bulletin & review, vol. 28, pp. 788–794, 1 2021.

[15] R. Avula, “Overcoming data silos in healthcare with strategies for enhancing integration and interoperability to improve
clinical and operational efficiency,” Journal of Advanced Analytics in Healthcare Management, vol. 4, no. 10, pp. 26–44,
2020.

[16] E. Wang, P. Tayebi, and Y.-T. Song, “Cloud-based digital twins’ storage in emergency healthcare,” International Journal of
Networked and Distributed Computing, vol. 11, pp. 75–87, 8 2023.



librasophia 23

[17] M. Khanna, B. M. Gramig, E. H. DeLucia, X. Cai, and P. Kumar, “Harnessing emerging technologies to reduce gulf
hypoxia,” Nature Sustainability, vol. 2, pp. 889–891, 9 2019.

[18] M. Chinipardaz, A. Khoramfar, and S. Amraee, “Green internet of things and solar energy.,” Environmental science and
pollution research international, vol. 31, pp. 18296–18312, 12 2023.

[19] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “Integrating polystore rdbms with common in-memory data,” in 2020
IEEE International Conference on Big Data (Big Data), pp. 5762–5764, IEEE, 2020.

[20] R. Ranchal, P. R. Bastide, X. Wang, A. Gkoulalas-Divanis, M. Mehra, S. Bakthavachalam, H. Lei, and A. Mohindra,
“Disrupting healthcare silos: Addressing data volume, velocity and variety with a cloud-native healthcare data ingestion
service,” IEEE journal of biomedical and health informatics, vol. 24, pp. 3182–3188, 11 2020.

[21] A. Qayyum, A. Ijaz, M. Usama, W. Iqbal, J. Qadir, Y. Elkhatib, and A. Al-Fuqaha, “Securing machine learning in the cloud:
A systematic review of cloud machine learning security.,” Frontiers in big data, vol. 3, pp. 587139–587139, 11 2020.

[22] B. J. Jaworski, “Netflix: Reinvention across multiple time periods,” AMS Review, vol. 11, pp. 180–193, 4 2021.

[23] T. P. Kharel, A. J. Ashworth, P. R. Owens, and M. Buser, “Spatially and temporally disparate data in systems agriculture:
Issues and prospective solutions,” Agronomy Journal, vol. 112, pp. 4498–4510, 6 2020.

[24] A. Farouzi, X. Zhou, L. Bellatreche, M. Malki, and C. Ordonez, “Balanced parallel triangle enumeration with an adaptive
algorithm,” Distributed and Parallel Databases, vol. 42, pp. 103–141, 7 2023.

[25] E. Uffelmann, Q. Q. Huang, N. S. Munung, J. de Vries, Y. Okada, A. R. Martin, H. C. Martin, T. Lappalainen, and
D. Posthuma, “Genome-wide association studies,” Nature Reviews Methods Primers, vol. 1, pp. 1–21, 8 2021.

[26] T. Hu, S. Wang, W. Luo, M. Zhang, X. Huang, Y. Yan, R. Liu, K. Ly, V. Kacker, B. She, and Z. Li, “Revealing public opinion
towards covid-19 vaccines with twitter data in the united states: Spatiotemporal perspective.,” Journal of medical Internet
research, vol. 23, pp. e30854–, 9 2021.

[27] A. K. A. Talukder and K. Deb, “An improved visual analytics framework for high-dimensional pareto-optimal front: a case
for multi-objective portfolio optimization,” Journal of Banking and Financial Technology, vol. 5, pp. 105–115, 7 2021.

[28] M. Kansara, “A framework for automation of cloud migrations for efficiency, scalability, and robust security across diverse
infrastructures,” Quarterly Journal of Emerging Technologies and Innovations, vol. 8, no. 2, pp. 173–189, 2023.

[29] A. Sigov, L. Ratkin, L. A. Ivanov, and L. D. Xu, “Emerging enabling technologies for industry 4.0 and beyond,” Information
Systems Frontiers, vol. 26, pp. 1585–1595, 1 2022.

[30] M. Abouelyazid, “Forecasting resource usage in cloud environments using temporal convolutional networks,” Applied
Research in Artificial Intelligence and Cloud Computing, vol. 5, no. 1, pp. 179–194, 2022.

[31] K. Sheng, “Artificial intelligence in radiotherapy: a technological review.,” Frontiers of medicine, vol. 14, pp. 431–449, 7
2020.

[32] K. D. Strang, “Problems with research methods in medical device big data analytics,” International Journal of Data Science
and Analytics, vol. 9, pp. 229–240, 2 2019.

[33] P. B. Stark, “Pay no attention to the model behind the curtain,” Pure and Applied Geophysics, vol. 179, pp. 4121–4145, 9
2022.

[34] P. Zečević, C. T. Slater, M. Juric, A. J. Connolly, S. Lončarić, E. C. Bellm, V. Z. Golkhou, and K. Suberlak, “Axs: A
framework for fast astronomical data processing based on apache spark.,” The Astronomical Journal, vol. 158, pp. 37–, 7
2019.

[35] shankar prawesh and W. Rand, “Big network analysis for influence identification on social networks,” SSRN Electronic
Journal, 1 2020.

[36] M. Hassan, A. I. E. Desouky, M. M. Badawy, A. Sarhan, M. Elhoseny, and M. Gunasekaran, “Eot-driven hybrid ambient
assisted living framework with naïve bayes–firefly algorithm,” Neural Computing and Applications, vol. 31, pp. 1275–1300,
5 2018.

[37] R. T. Ilieva and T. McPhearson, “Social-media data for urban sustainability,” Nature Sustainability, vol. 1, pp. 553–565, 10
2018.



24 librasophia

[38] D. Teffer, R. Srinivasan, and J. Ghosh, “Adahash: hashing-based scalable, adaptive hierarchical clustering of streaming data
on mapreduce frameworks,” International Journal of Data Science and Analytics, vol. 8, pp. 257–267, 8 2018.

[39] B. B. Gupta, D. P. Agrawal, S. Yamaguchi, and M. Sheng, “Soft computing techniques for big data and cloud computing,”
Soft Computing, vol. 24, pp. 5483–5484, 3 2020.

[40] U. Winkelhake, “Challenges in the digital transformation of the automotive industry,” ATZ worldwide, vol. 121, pp. 36–43,
7 2019.

[41] R. Liu, “Addressing score comparability in diagnostic classification models: an observed-score equating and linking
approach,” Behaviormetrika, vol. 47, pp. 55–80, 12 2019.

[42] A. M. Mastroianni and D. T. Gilbert, “The illusion of moral decline.,” Nature, vol. 618, pp. 782–789, 6 2023.

[43] L. Bellatreche and S. Chakravarthy, “A special issue in extending data warehouses to big data analytics,” Distributed and
Parallel Databases, vol. 37, pp. 323–327, 2 2019.

[44] Y. Ding and A. Javadi-Abhari, “Quantum and post-moore’s law computing,” IEEE Internet Computing, vol. 26, pp. 5–6, 1
2022.

[45] A. E. Khaled, “Internet of medical things (iomt): Overview, taxonomies, and classifications,” Journal of Computer and
Communications, vol. 10, no. 8, pp. 64–89, 2022.

[46] M. Kansara, “A structured lifecycle approach to large-scale cloud database migration: Challenges and strategies for an
optimal transition,” Applied Research in Artificial Intelligence and Cloud Computing, vol. 5, no. 1, pp. 237–261, 2022.

[47] M. Mahdianpari, B. Salehi, F. Mohammadimanesh, B. Brisco, S. Homayouni, E. W. Gill, E. R. DeLancey, and L. L.
Bourgeau-Chavez, “Big data for a big country: The first generation of canadian wetland inventory map at a spatial resolution
of 10-m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform,” Canadian Journal of
Remote Sensing, vol. 46, pp. 15–33, 1 2020.

[48] T. K. Taylor, R. Chakraborti, and N. Mahaney, “Do higher levels of athletic competition benefit small and medium-sized
colleges? investigating the causal effect of reclassification from ncaa division 2 to division 1 on applications, basketball
revenues, and athletic department expenses,” Innovative Higher Education, vol. 49, pp. 349–375, 11 2023.

[49] R. Avula, “Addressing barriers in data collection, transmission, and security to optimize data availability in healthcare systems
for improved clinical decision-making and analytics,” Applied Research in Artificial Intelligence and Cloud Computing,
vol. 4, no. 1, pp. 78–93, 2021.

[50] K. Akbudak, “Hypergraph-based locality-enhancing methods for graph operations in big data applications,” The International
Journal of High Performance Computing Applications, vol. 38, pp. 210–224, 11 2023.

[51] O. Ruiz-Alvarez, V. P. Singh, J. Enciso-Medina, R. E. Ontiveros-Capurata, and C. A. C. dos Santos, “Observed trends in daily
temperature extreme indices in aguascalientes, mexico,” Theoretical and Applied Climatology, vol. 142, pp. 1425–1445, 9
2020.

[52] A. Alekseev, A. Kiryanov, A. Klimentov, T. Korchuganova, V. Mitsyn, D. Oleynik, A. Petrosyan, S. Smirnov, and
A. Zarochentsev, “Data handling optimization in russian data lake prototype,” Journal of Physics: Conference Series,
vol. 2438, pp. 12021–012021, 2 2023.

[53] P. Patil, M. Sangeetha, and V. Bhaskar, “Blockchain for iot access control, security and privacy: A review,” Wireless Personal
Communications, vol. 117, pp. 1815–1834, 11 2020.

[54] S. Vishwakarma, R. S. Goswami, P. P. Nayudu, K. R. Sekhar, P. R. R. Arnepalli, R. Thatikonda, and W. M. F. Abdel-Rehim,
“Secure federated learning architecture for fuzzy classifier in healthcare environment,” Soft Computing, 7 2023.

[55] J. Schoenfeld, “Cyber risk and voluntary service organization control (soc) audits,” Review of Accounting Studies, vol. 29,
pp. 580–620, 8 2022.

[56] R. Sen and S. Chakrabarti, “Disaster management dynamics – an analysis of chaos from the flash flood (2013) in the fragile
himalayan system,” Journal of the Geological Society of India, vol. 93, pp. 321–330, 3 2019.

[57] L. B. Larsen, I. Adam, G. J. Berman, J. Hallam, and C. P. H. Elemans, “Driving singing behaviour in songbirds using a
multi-modal, multi-agent virtual environment.,” Scientific reports, vol. 12, pp. 13414–, 8 2022.



librasophia 25

[58] J. Z. Zhang, P. R. Srivastava, D. Sharma, and P. Eachempati, “Big data analytics and machine learning: A retrospective
overview and bibliometric analysis,” Expert Systems with Applications, vol. 184, pp. 115561–, 2021.

[59] V. Hillman and M. Esquivel, “The ’solution stack’ of a neoliberal inferno apparatus: A call for teacher conscience,” Postdigital
Science and Education, vol. 6, pp. 516–536, 11 2023.

[60] B. Abusalah, T. M. Qadah, J. J. Stephen, and P. Eugster, “Interminable flows: A generic, joint, customizable resiliency model
for big-data streaming platforms,” IEEE Access, vol. 11, pp. 10762–10776, 2023.

[61] P. I. Palmer, C. M. Wainwright, B. Dong, R. I. Maidment, K. G. Wheeler, N. Gedney, J. E. Hickman, N. Madani, S. S. Folwell,
G. Abdo, R. P. Allan, E. C. L. Black, L. Feng, M. Gudoshava, K. Haines, C. Huntingford, M. Kilavi, M. F. Lunt, A. Shaaban,
and A. G. Turner, “Drivers and impacts of eastern african rainfall variability,” Nature Reviews Earth & Environment, vol. 4,
pp. 254–270, 3 2023.

[62] A. N. Soni, “Challenges of research analysis in big data and cloud computing analytics,” SSRN Electronic Journal, 2020.

[63] M. Kuzlu, C. Fair, and O. Guler, “Role of artificial intelligence in the internet of things (iot) cybersecurity,” Discover Internet
of Things, vol. 1, pp. 1–14, 2 2021.

[64] J. Palomino and M. Kelly, “Differing sensitivities to fire disturbance result in large differences among remotely sensed
products of vegetation disturbance,” Ecosystems, vol. 22, pp. 1767–1786, 4 2019.

[65] J. Yu, G. Zhu, H. Chen, L. Wang, and M. Xu, “Research on software architecture optimization of cloud computing data
center based on hadoop,” IOP Conference Series: Materials Science and Engineering, vol. 677, pp. 042015–, 12 2019.

[66] T. Baker and A. Shortland, “Insurance and enterprise: cyber insurance for ransomware,” The Geneva Papers on Risk and
Insurance - Issues and Practice, vol. 48, pp. 275–299, 12 2022.

[67] Y. Zheng and J. R. Toribio, “The role of transparency in multi-stakeholder educational recommendations,” User Modeling
and User-Adapted Interaction, vol. 31, pp. 513–540, 4 2021.

[68] F. A. Khan, A. ur Rahman, M. Alharbi, and Y. K. Qawqzeh, “Awareness and willingness to use phr: a roadmap towards
cloud-dew architecture based phr framework,” Multimedia Tools and Applications, vol. 79, pp. 8399–8413, 9 2018.

[69] X. Tang, L. Zhao, J. Chong, Z. You, L. Zhu, H. Ren, Y. Shang, Y. Han, and G. Li, “5g-based smart healthcare system
designing and field trial in hospitals,” IET Communications, vol. 16, pp. 1–13, 11 2021.

[70] R. Avula, “Assessing the impact of data quality on predictive analytics in healthcare: Strategies, tools, and techniques for
ensuring accuracy, completeness, and timeliness in electronic health records,” Sage Science Review of Applied Machine
Learning, vol. 4, no. 2, pp. 31–47, 2021.

[71] V. Patrangenaru, P. Bubenik, R. L. Paige, and D. E. Osborne, “Challenges in topological object data analysis,” Sankhya A,
vol. 81, pp. 244–271, 9 2018.

[72] G. Saldamli, C. Upadhyay, D. Jadhav, R. Shrishrimal, B. Patil, and L. Tawalbeh, “Improved gossip protocol for blockchain
applications,” Cluster Computing, vol. 25, pp. 1915–1926, 1 2022.

[73] B. Muthu, C. B. Sivaparthipan, G. Manogaran, R. Sundarasekar, S. Kadry, A. Shanthini, and A. A. Dasel, “Iot based wearable
sensor for diseases prediction and symptom analysis in healthcare sector,” Peer-to-Peer Networking and Applications, vol. 13,
pp. 2123–2134, 1 2020.

[74] M. Zia, P. Spurgeon, A. Levesque, T. R. Furlani, and J. Wang, “Genesysv: a fast, intuitive and scalable genome exploration
open source tool for variants generated from high-throughput sequencing projects,” BMC bioinformatics, vol. 20, pp. 61–61,
1 2019.

[75] N. Alamanos, C. Bertulani, A. Bonaccorso, A. Bracco, D. M. Brink, G. Casini, M. A. Ciocci, V. Rosso, and M. Viviani,
“Editorial: re-writing nuclear physics textbooks,” The European Physical Journal Plus, vol. 137, 3 2022.

[76] M. Muniswamaiah, T. Agerwala, and C. Tappert, “Big data in cloud computing review and opportunities,” arXiv preprint
arXiv:1912.10821, 2019.

[77] M. Ofori and O. F. El-Gayar, “Drivers and challenges of precision agriculture: a social media perspective,” Precision
Agriculture, vol. 22, pp. 1019–1044, 10 2020.

[78] M. Sellami, H. Mezni, M. S. Hacid, and M. M. Gammoudi, “Clustering-based data placement in cloud computing: a
predictive approach,” Cluster Computing, vol. 24, pp. 3311–3336, 6 2021.



26 librasophia

[79] D. Camuffo, F. Becherini, and A. della Valle, “The beccari series of precipitation in bologna, italy, from 1723 to 1765,”
Climatic Change, vol. 155, pp. 359–376, 7 2019.

[80] T. Atahary, T. M. Taha, and S. Douglass, “Parallelized path-based search for constraint satisfaction in autonomous cognitive
agents,” The Journal of Supercomputing, vol. 77, pp. 1667–1692, 5 2020.

[81] M. Kwet, “Surveillance in south africa: From skin branding to digital colonialism,” SSRN Electronic Journal, 2020.

[82] T. Imamura, J. L. Mitchell, S. Lebonnois, Y. Kaspi, A. P. Showman, and O. Korablev, “Superrotation in planetary
atmospheres,” Space Science Reviews, vol. 216, pp. 87–, 7 2020.

[83] S. P. Kim, H.-G. Sohn, M. K. Kim, and H. Lee, “Analysis of the relationship among flood severity, precipitation, and
deforestation in the tonle sap lake area, cambodia using multi-sensor approach,” KSCE Journal of Civil Engineering, vol. 23,
no. 3, pp. 1330–1340, 2019.

[84] M. Ángel Hernández-Ceballos, S. R. Hanna, R. Bianconi, R. Bellasio, J. C. Chang, T. Mazzola, S. Andronopoulos, P. Armand,
N. Benbouta, P. Čarný, N. Ek, E. Fojcíková, R. N. Fry, L. Huggett, P. Kopka, M. Korycki, Ľudovít Lipták, S. Millington,
S. Miner, O. Oldrini, S. Potempski, G. Tinarelli, S. T. Castelli, A. G. Venetsanos, and S. Galmarini, “Udinee: Evaluation
of multiple models with data from the ju2003 puff releases in oklahoma city. part ii: Simulation of puff parameters,”
Boundary-Layer Meteorology, vol. 171, pp. 351–376, 2 2019.

[85] M. Amani, A. Ghorbanian, S. A. Ahmadi, M. Kakooei, A. Moghimi, S. M. Mirmazloumi, S. H. A. Moghaddam, S. Mahdavi,
M. Ghahremanloo, S. Parsian, Q. Wu, and B. Brisco, “Google earth engine cloud computing platform for remote sensing big
data applications: A comprehensive review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 13, pp. 5326–5350, 2020.

[86] A. Shahzad, M. S. A. bin Zakaria, H. Kotzab, M. A. M. Makki, A. Hussain, and J. Fischer, “Adoption of fourth industrial
revolution 4.0 among malaysian small and medium enterprises (smes),” Humanities and Social Sciences Communications,
vol. 10, 10 2023.

[87] Y. Han, T. Shevchenko, B. Yannou, M. Ranjbari, Z. S. Esfandabadi, M. Saidani, G. Bouillass, K. Bliumska-Danko, and G. Li,
“Exploring how digital technologies enable a circular economy of products,” Sustainability, vol. 15, pp. 2067–2067, 1 2023.

[88] G. L. Calhoun, J. Bartik, H. A. Ruff, K. J. Behymer, and E. Frost, “Enabling human-autonomy teaming with multi-unmanned
vehicle control interfaces,” Human-Intelligent Systems Integration, vol. 3, pp. 155–174, 1 2021.


	Introduction
	Foundations of Scalable Real-Time Stream Processing
	Architectural Models and Mathematical Formulations
	Implementation Insights and Experimental Observations
	Practical Considerations and Limitations
	Conclusion

